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Abstract. In this paper we study the behavior of the roots of the
Steiner polynomial of a convex body when we embed it in a higher di-
mensional space. In the 3-dimensional case, the involved sets will follow
a precise pattern when they are mapped into the Blaschke diagram. We
also construct and characterize the so-called dual Blaschke diagram. As
an immediate consequence of it we will get a new characterization of
dual quermassintegrals in dimension n = 3.

1. Introduction and notation

Let Kn denote the set of convex bodies in Rn, i.e., the family of all non-
empty convex and compact subsets K ⊂ Rn, and with Kn

0 we represent
the family of those convex bodies containing the origin in their interior. In
particular, we write Bn to denote the Euclidean unit ball. The volume of a
measurable set M ⊂ Rn, i.e., its n-dimensional Lebesgue measure is denoted
by vol(M), or by voln(M) if the distinction of the dimension is needed.

For a convex body K ∈ Kn and a non-negative real number λ, the volume
of the Minkowski sum K + λBn is a polynomial of degree n in λ, and it is
written as

(1.1) vol(K + λBn) =
n∑

i=0

(
n

i

)
Wi(K)λi

(see [11]). This expression is called the Steiner formula of K. The co-
efficients Wi(K) are the quermassintegrals of K, and they are a special
case of the more general defined mixed volumes, for which we refer to [10,
Section 5.1]. In particular, W0(K) = vol(K), Wn(K) = vol(Bn) =: κn,
nW1(K) is the surface area of K and (2/κn)Wn−1(K) is the so-called mean
width of K ([10, page 50]). Quermassintegrals do also satisfy a system of
Steiner type formulae (see [10, Note 6 for Section 4.2]), namely,

(1.2) Wi(K + λBn) =
n−i∑

k=0

(
n− i

k

)
Wi+k(K)λk.
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In several recent articles (see [4] and the references therein) properties
of the roots of the Steiner polynomial fK,Bn

(z) :=
∑n

i=0

(
n
i

)
Wi(K)zi (re-

garded as a polynomial in a complex variable z ∈ C, cf. (1.1)), but in the
more general setting of the Minkowski Geometry, are investigated: structural
properties of the cone of roots, convexity, topology, monotonicity, stability...

In [6] the 3-dimensional (classical) Steiner polynomial was considered:
convex bodies were classified in terms of relations (equations and inequali-
ties) among the quermassintegrals, with respect to the algebraic type of the
roots of the polynomial; moreover, this kind of classification turned out to
be closely related to a well-known open question in Convexity, namely, the
so-called Blaschke problem.

This paper can be divided into two parts: on one hand we will continue
the investigation of the above mentioned relation between properties of the
roots of Steiner polynomials and the Blaschke diagram; on the other hand,
in the last section of the article, we will study the corresponding Blaschke
problem in the setting of the so-called dual Brunn-Minkowski theory.

We conclude the introduction with a brief review on the Blaschke problem.

1.1. The Blaschke problem. In [2] Blaschke asked for a characterization
of the set of all points in R3 of the form

(
vol(K), 3W1(K), 3W2(K)

)
as K

ranges over K3 or, equivalently, for a characterization of the set of points

B =
{(

x(K) =
4πW1(K)
3W2(K)2

, y(K) =
16π2vol(K)
9W2(K)3

)
∈ [0, 1]2 : K ∈ K3

}
.

The latter set is called the Blaschke diagram, and the map K3 −→ [0, 1]2

given by K Ã
(
x(K), y(K)

)
, the Blaschke map. One of the main problems in

this context is to describe the Blaschke diagram B. Thus, according to the
known inequalities relating the quermassintegrals, namely, the Minkowski
inequalities and the isoperimetric inequality for planar sets, the Blaschke
diagram contains the shaded region in Figure 1, left.
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(0, 0) (1, 0)
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π
2 , 0
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2

(1, 1) ≡ triple root

MK
Double roots

6
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Complex roots

	
3 simple roots

Figure 1. The Blaschke diagram and the type of roots of
the Steiner polynomial.
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Indeed, the Minkowski inequalities

W2(K)2 ≥ (4π/3)W1(K) and W2(K)3 ≥ (4π/3)2 vol(K)

(equality holds for balls in both inequalities) ensure that the diagram is a
subset of the unit square [0, 1]2. Furthermore, the third Minkowski inequal-
ity

W1(K)2 ≥ vol(K)W2(K)
corresponds to y ≤ x2, and since the cap-bodies are the extremal sets for
this inequality, they are mapped to the points of the parabola y = x2, from
(0, 0) –the segments– to (1, 1) –the balls (see Figure 1, left). We recall that
a cap-body is the convex hull of a ball and countably many points such that
the line segment joining any pair of those points intersects the ball (the limit
cases of a line segment and a ball are included in this definition).

Finally, all planar convex bodies in R3 satisfy the isoperimetric inequality

6W2(K)2 ≥ π3W1(K) with vol(K) = 0

(with equality for discs, cf. (2.1)); so, planar sets are mapped to the segment
[0, 8/π2] of the x-axis –the point (8/π2, 0) corresponding to the disc D.
Hence, if 8/π2 < x ≤ 1, the y-coordinate has to be strictly positive, but
the inequality satisfied by the convex bodies in this range is still unknown.
The corresponding missing curve is known in the literature as the missing
boundary of the Blaschke diagram. The problem of determining the known
curve (and its higher dimensional version) remains open. Nowadays, there
are two different conjectures, posed by Bieri and Sangwine-Yager (see [3,
§ 28] and [9] for a more detailed explanation).

Moreover, depending on the type of roots of its Steiner polynomial, a
convex body is mapped into very precise regions/curves in the Blaschke
diagram, as can be seen in Figure 1, right. These regions are determined by
the equations y = 3x− 2± 2(1− x)3/2, and were obtained in [6].

2. Embedding 2- and 3-dimensional convex bodies in Rn

In this section we consider k-dimensional convex bodies, k = 2, 3, embed-
ded in a higher dimensional Euclidean space, and study the behavior of (the
roots of) their Steiner polynomials. In the 3-dimensional case, the involved
sets will follow a precise pattern when they are mapped into the Blaschke
diagram.

If K ∈ Kn is a convex body contained in a k-dimensional subspace L,
k = 1, . . . , n − 1, we write W

(k)

j (K), j = 0, . . . , k, to denote the j-th quer-
massintegral of K (relative to the k-dimensional ball Bk ⊂ L) in dimension k.
These k-dimensional quermassintegrals of K are related to the n-dimensional
ones by means of the following identity:

(2.1) Wj(K) =





0 j = 0, . . . , n− k − 1,(
k

k+j−n

)
(
n
j

) κj

κk+j−n
W

(k)

k+j−n(K) j = n− k, . . . , n.
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Thus it is easy to check that the Steiner polynomial fK,Bn
(z) is given by

(2.2) fK,Bn
(z) = zn−k

[
k∑

i=0

(
k

i

)
κn−k+i

κi
W

(k)

i (K) zi

]
.

For a planar convex body K we denote, as usual, by A(K) = W
(2)

0 (K) and
p(K) = 2W

(2)

1 (K) its area and perimeter, respectively. Finally, we introduce
the following notation: let

Rk,n =
{
K ∈ Kk : dimK = k, fK,Bn

(z) has only real roots
}

where, in order to consider the Steiner polynomial fK,Bn
(z), the set K is

embedded in Rn.

Theorem 2.1. R2,n ⊃ R2,n+1 for all n ≥ 2, and the inclusion is strict.

Proof. Let K ∈ K2 with dimK = 2. Then by (2.2) we have

fK,Bn
(z) = zn−2

[
κn−2A(K) +

κn−1

2
p(K)z + κnz2

]
,

being its roots 0 (n− 2 times) and

−κn−1p(K)±
√

κ2
n−1p(K)2 − 16κnκn−2A(K)

4κn
.

Thus fK,Bn
(z) will have only real roots if and only if

(2.3) p(K)2 ≥ 16
κnκn−2

κ2
n−1

A(K).

Notice that for n = 2 we get the classical isoperimetric inequality, and
hence R2,2 = K2. Since κnκn−2/κ2

n−1 is a strictly increasing function in the
dimension (see [5, Lemma 2.1]), we get that R2,n ⊃ R2,n+1 strictly. ¤

Remark 2.1. The function κnκn−2/κ2
n−1 is strictly increasing in the di-

mension and limn→∞ κnκn−2/κ2
n−1 = 1 (see [5, Lemma 2.1]). Therefore,

denoting by R2,∞ the limit case, we have that

R2,∞ =
{
K ∈ K2 : p(K)2 ≥ 16A(K)

}
,

and thus, the n-dimensional Steiner polynomial of any planar convex body
verifying the inequality p(K)2 ≥ 16A(K) will have all its roots real for any
value of the dimension. In particular any square C2 satisfies that property
and has maximum area among all sets in R2,∞ with fixed perimeter, because
p(C2)2 = 16A(C2).

Next we consider the case of 3-dimensional convex bodies.

Theorem 2.2. R3,n ⊃ R3,n+2 for all n ≥ 3, and the inclusion is strict.
Moreover, R3,n ⊃ R3,n+1 does not hold.
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Proof. Let K ∈ K3 with dimK = 3. Then by (2.2) we have

fK,Bn
(z) = zn−3

[
κn−3W

(3)

0 (K)+
3κn−2

2
W

(3)

1 (K)z+
3κn−1

π
W

(3)

2 (K)z2+ κnz3

]
.

In general one can check (see also [6, Section 2]) that a 3-dimensional poly-
nomial of the form a0 + a1z + a2z

2 + z3 has three real roots if and only if

(2.4)





2a3
2 − 9(a1a2 − 3a0) + 2(a2

2 − 3a1)3/2 ≥ 0,

2a3
2 − 9(a1a2 − 3a0)− 2(a2

2 − 3a1)3/2 ≤ 0,

a2
2 ≥ 3a1,

simultaneously. Or equivalently, when a2 6= 0, if and only if the inequalities

(2.5) y ≥ 3x− 2− 2(1− x)3/2, y ≤ 3x− 2 + 2(1− x)3/2, x ≤ 1

hold, where the coordinates (x, y) are given by x = 3a1/a2
2 and y = 27a0/a3

2.
Denoting by (xn, yn) the corresponding coordinates of the above polyno-

mial fK,Bn
(z), it is an easy computation to check that

(2.6) xn =
κnκn−2κ

2
2

κ2
n−1κ3κ1

x3 =: h(n) x3, yn =
κ2

nκn−3κ
3
2

κ3
n−1κ

2
3

y3 =: g(n) y3,

and then, in order to prove thatR3,n ⊃ R3,n+2 for all n ≥ 3, we have to show
that if the coordinates (xn+2, yn+2) satisfy (2.5), then (xn, yn) do so. Thus
we assume that (xn+2, yn+2) satisfy (2.5). From xn+2 = h(n+2)x3 ≤ 1, i.e.,
x3 ≤ 1/h(n + 2), we get

xn = h(n)x3 ≤ h(n)
h(n + 2)

=
κ2

n+1κn−2

κn+2κ2
n−1

,

and since for all n ≥ 2

(2.7)
κn+1

κn−1
=

π(n+1)/2

Γ
(

n+1
2 +1

) Γ
(

n−1
2 +1

)

π(n−1)/2
=

πΓ
(

n+1
2

)

Γ
(

n+1
2 +1

) =
πΓ

(
n+1

2

)
n+1

2 Γ
(

n+1
2

) =
2π

n + 1
,

we get

xn ≤ h(n)
h(n + 2)

=
(

2π

n + 1

)2 κn−2κn

κnκn+2
=

(
2π

n + 1

)2 n

2π

n + 2
2π

=
n(n + 2)
(n + 1)2

< 1.

Finally we prove that (xn, yn) satisfies the first inequality in (2.5); for the
second one the argument is analogous. Notice that, in this case, it is enough
to consider x ∈ [3/4, 1], since y ≥ 0 always. From (2.6) and (2.7) we have

xn =
h(n)

h(n + 2)
xn+2 =

n(n + 2)
(n + 1)2

xn+2,

yn =
g(n)

g(n + 2)
yn+2 =

(n− 1)(n + 2)2

(n + 1)3
yn+2,

and since yn+2 ≥ 3xn+2 − 2− 2(1− xn+2)3/2, we get

yn ≥ g(n)
g(n + 2)

[
3xn+2 − 2− 2(1− xn+2)3/2

]
.
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Thus it suffices to prove that

g(n)
g(n + 2)

[
3xn+2−2− 2(1− xn+2)3/2

]
≥ 3xn − 2− 2(1− xn)3/2

= 3
h(n)

h(n + 2)
xn+2 −2−2

(
1− h(n)

h(n + 2)
xn+2

)3/2(2.8)

when 3/4 ≤ xn+2 ≤ 1. If xn+2 = 3/4 one can easily check that (2.8) holds,
since the left-hand side vanishes whereas the right one is strictly negative.
Thus we can consider the function

F (x, h) =
3hx− 2− 2 (1− hx)3/2

3x− 2− 2(1− x)3/2
for (x, h) ∈

(
3
4
, 1

]
×

[
15
16

, 1
]

.

Elementary computations show that
(
d2F/(dxdh)

)
(x, h) < 0, which implies

that (dF/dx)(x, h) > (dF/dx)(x, 1) = 0, i.e., F (x, h) is an increasing func-
tion in x, and thus

F (x, h) ≤ F (1, h) = 3h− 2− 2(1− h)3/2.

Therefore,

F

(
xn+2,

h(n)
h(n + 2)

)
≤ F

(
1,

n(n + 2)
(n + 1)2

)
=

(n− 1)(n + 2)2

(n + 1)3
=

g(n)
g(n + 2)

,

which proves (2.8). Notice that since all the functions involved are strictly
monotonous, there is equality just for xn+2 = 1.

We conclude the proof showing that the inclusion R3,n ⊃ R3,n+1 is not
true. Indeed, for n = 3 we can find a convex body K ∈ K3 whose 3-dimen-
sional Steiner polynomial has complex roots, but such that fK,B4

(z) has only
real roots. The technique of the Blaschke diagram will be very useful for this
purpose. For instance, let ω0 = 11/(10π2), ω1 = 19/(15π) and ω2 = 4/3.
If we prove the existence of K ∈ K3 with vol(K) = ω0, W1(K) = ω1 and
W2(K) = ω2, then the corresponding Steiner polynomials in dimensions 3
and 4 will be, respectively,

fK,B3
(z) =

11
10π2

+
19
5π

z + 4z2 +
4π

3
z3 and

fK,B4
(z) =

11
5π2

z +
19
10

z2 +
16
3

z3 +
π2

2
z4,

and an easy computation allows to check that the first one has complex roots,
whereas all the roots of fK,B4

(z) are real (and simple). Thus, in order to
conclude the proof, we just have to show the existence of K ∈ K3 satisfying
the above conditions. So, for ω0, ω1, ω2, we consider the coordinates

xω =
4πω1

3ω2
2

=
19
20

, yω =
16π2ω0

9ω3
2

=
33
40

and the corresponding image point (xω, yω) in the unit square [0, 1]2 (see
Figure 2).
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6

-

1 Outer parallel bodies
of the disc

1 (xω, yω)

Figure 2. The point (xω, yω) ∈ B.

Since the boundary in the right-hand side of the diagram is unknown, we
need to assure somehow that (xω, yω) ∈ B. In order to do it, we consider
the unit disc D and the family D + λB3, λ ≥ 0. Using (1.2) and (2.1), we
get that the quermassintegrals of D + λB3 are given by

vol(D + λB3) = 2A(D)λ +
π

2
p(D)λ2 +

4π

3
λ3 = 2πλ + π2λ2 +

4π

3
λ3,

W1(D + λB3) =
2
3
A(D) +

π

3
p(D)λ +

4π

3
λ2 =

2π

3
+

2π2

3
λ +

4π

3
λ2,

W2(D + λB3) =
π

6
p(D) +

4π

3
λ =

π2

3
+

4π

3
λ,

and thus, it is a direct computation to see that the family D + λB3, λ ≥ 0,
is mapped to the curve

y = 3x− 2− 2π(12− π2)
(

1− x

π2 − 8

)3/2

=: f(x).

Then one can easily check that yω > f(xω), which implies that the point
(xω, yω) lies in the part of the diagram bounded by the image curve y = f(x)
of the family D + λB3 (see Figure 2); hence, (xω, yω) ∈ B. This ensures the
existence of K ∈ K3 such that vol(K) = ω0, W1(K) = ω1 and W2(K) = ω2

(we even know that K = M + λ0B3 for a convex body M with dimM = 2
and a suitable λ0 > 0, see [6, Corollary 3]). It concludes the proof. ¤
Remark 2.2. The functions h(n), g(n) (cf. (2.6)) are strictly increasing in
the dimension, with limn→∞ h(n) = 3π/8 and limn→∞ g(n) = 9π/16. Thus,
we denote by R3,∞ the limit case, i.e.,

R3,∞ =
{

K ∈ K3 :
9π

16
y3 ≥ 9π

8
x3 − 2− 2

(
1− 3π

8
x3

)3/2

,

9π

16
y3 ≤ 9π

8
x3 − 2 + 2

(
1− 3π

8
x3

)3/2

, x3 ≤ 8
3π

}
.
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An analogous argument to the one of the proof of Theorem 2.2 allows us to
show that R3,∞ ⊂ R3,n for all n ≥ 3, which means that the n-dimensional
Steiner polynomial of any 3-dimensional convex body whose (x3, y3)-coordi-
nates verify the above inequalities will have all its roots real for any value
of the dimension. Notice that the (x3, y3)-coordinates are nothing but the
(x, y)-coordinates defining the Blaschke diagram. Figure 3 shows the regions
R3,3 and R3,∞.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

6

-
R3,∞

y = x2

R3,3

C2

-C3

Figure 3. The regions R3,3 and R3,∞.

It is easy to verify that the (x, y)-coordinates of the orthogonal boxes with
basis the unit square and height h ∈ [0,∞] are given by

(
8(2h + 1)
π(h + 2)2

,
48h

π(h + 2)3

)
,

and fill the boundary curve of R3,∞: when h ∈ [0, 1] the right part of the
boundary of R3,∞ is obtained, from (2/π, 0) (the square C2) to the point(
8/(3π), 16/(9π)

)
(the cube C3), see Figure 3; the left boundary curve is

achieved for h ≥ 1, being the limit case as h → ∞ the point (0, 0) (corre-
sponding to the segments). In particular, (any dilation of) the cube C3 has
maximum volume among all sets in R3,∞ with given quermassintegral W2.

3. On the dual Blaschke diagram

Next we move into the dual setting. The dual Brunn-Minkowski theory
goes back to Lutwak [7, 8], and, among others, convex bodies are replaced
by star bodies, the Minkowski sum by the radial addition and the support
function by the radial function (see e.g. [10, Section 9.3]). If x, y ∈ Rn, the
radial addition x+̃y is defined as

x+̃y =
{

x + y if x, y are linearly dependent,
0 otherwise.
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In general, the radial sum K+̃E = {x+̃y : x ∈ K, y ∈ E} of two convex
bodies K,E is not a convex set, but the radial sum of two star bodies is again
a star body. In order to define star bodies, we call a non-empty set S ⊆ Rn

starshaped (with respect to the origin) if the segment [0, x] ⊆ S for all x ∈ S.
For a compact starshaped set K its radial function ρK : Sn−1 −→ R≥0 is
defined by ρK(u) = max{ρ ≥ 0 : ρu ∈ K}. If this function is positive and
continuous then K is called a star body. In particular, any star body has
non-empty interior and any convex body containing the origin in its interior
is a star body. We denote by Sn

0 the set of all star bodies in Rn.
It is easy to see that, in this case, the volume of the radial sum K+̃λE,

K, E ∈ Sn
0 , is also expressed as a polynomial of degree n in λ (see e.g. [10,

page 508]), the so-called (relative) dual Steiner formula, and it is written as

(3.1) vol
(
K+̃λE

)
=

n∑

i=0

(
n

i

)
W̃i(K; E)λi.

The coefficients W̃i(K;E) are the dual quermassintegrals of K and E, and
they are special cases of the dual mixed volumes, which were introduced
for the first time by Lutwak in [7]. Dual quermassintegrals satisfy that
W̃0(K; E) = vol(K), W̃n(K; E) = vol(E) and W̃i(K; E) = W̃n−i(E; K);
furthermore, they are homogeneous of degree n − i (respectively, degree i)
in the first (respectively, second) argument. When E = Bn, we write for
short W̃i(K) = W̃i(K; Bn).

It is well-known that for K, E ∈ Sn
0 ,

(3.2) W̃j(K; E)k−i ≤ W̃i(K;E)k−jW̃k(K; E)j−i, i < j < k,

which are the “dual” counterpart to the classical Aleksandrov-Fenchel in-
equalities (see e.g. [10, (9.40)]). Now equality holds if and only if K and E
are dilates. In dimension n = 3 and when E = B3, (3.2) translates into

W̃1(K)2 ≤ vol(K)W̃2(K),(3.3)

W̃2(K)2 ≤ κ3W̃1(K),(3.4)

W̃1(K)3 ≤ κ3vol(K)2,(3.5)

W̃2(K)3 ≤ κ2
3vol(K).(3.6)

Next we follow the Blaschke idea and define the dual Blaschke map as

S3
0 −→ [0, 1]2

K Ã
(
x(K), y(K)

)
=

(
W̃1(K)

(
κ3vol(K)2

)1/3
,

W̃2(K)
(
κ2

3vol(K)
)1/3

)
,

which is well-defined because (3.5) and (3.6) ensure that both x(K), y(K) ∈
(0, 1]. We call the image B̃ of the above map the dual Blaschke diagram,
and the question arises to determine the set B̃.
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First we observe that this choice of the coordinates allows us to assure
that all the sets with the “same shape” are mapped to the same point in
the diagram because, due to the homogeneity of the dual quermassintegrals,
the functionals W̃1(K)/vol(K)2/3 and W̃2(K)/vol(K)1/3 are invariant under
dilations.

On the other hand, (3.3) and (3.4) correspond to y ≥ x2 and y2 ≤ x,
respectively, and therefore, B̃ will be contained in the region determined by
these two curves (see Figure 4). But since the only extremal sets for these
inequalities are balls, the boundary cannot be considered, except the point
(1, 1) (where B3 is mapped). As we will see next, this fact will provide a first
structural difference between the classical and the dual Blaschke diagrams:
the first one is closed, but not the dual one.

6

-

(1, 1)

y = x
2

y
2 = x

Figure 4. The dual Blaschke diagram.

Remark 3.1. We observe that contrary to the classical case, here we can
fix any star body E (not only the ball) and construct the dual Blaschke map
using the more general dual quermassintegrals W̃i(K; E). In the classical
Blaschke diagram the ball plays a crucial role, since it allows us to con-
sider planar sets and relate the area and perimeter with their 3-dimensional
quermassintegrals.

Theorem 3.1. The dual Blaschke diagram B̃ is the set

B̃ =
{
(x, y) ∈ [0, 1]2 : x2 < y <

√
x
} ∪ {

(1, 1)
}
.

In particular, B̃ is simply connected and not closed.

Proof. In [1, Theorem 2.2] a characterization of dual quermassintegrals is
proved in terms of the positive definiteness of particular matrices. This
result, together with [1, Lemma 2.2], reads as follows when n = 3: given
ωi > 0, i = 0, . . . , 3, there exists a star body K ∈ S3

0 with

W̃i

((ω0

κ3

)1/3
B3; K

)
= ωi for all i = 0, . . . , 3
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if and only if, either there exist 0 < a < b such that the Hankel matrices
(

ω1 − aω0 ω2 − aω1

ω2 − aω1 ω3 − aω2

)
and

(
bω0 − ω1 bω1 − ω2

bω1 − ω2 bω2 − ω3

)

are positive definite, or ωi = λiω0 for some λ > 0 and i = 1, 2, 3, and in this
case K = λB3.

On one hand we observe that, due to the homogeneity and the symmetry
of the dual quermassintegrals, the condition W̃i

(
(ω0/κ3)1/3B3; K

)
= ωi can

be written as

W̃3−i(K) =
(

κ3

ω0

)(3−i)/3

ωi;

therefore, for the sake of simplicity we can always assume that the first value
ω0 = κ3. On the other hand, we recall that a matrix is positive definite if
and only if its leading principal minors are all positive.

Thus, altogether, we get that the above characterization can be read as
follows: given ωi > 0, i = 1, 2, 3, there exists a star body K ∈ S3

0 , K 6= λB3

for all λ > 0, with W̃3−i(K) = ωi for every i = 1, 2, 3, if and only if there
exist 0 < a < b such that

a <
ω1

κ3
and ω1ω3 − ω2

2 + a2(κ3ω2 − ω2
1)− a(κ3ω3 − ω1ω2) > 0,

b >
ω1

κ3
and ω1ω3 − ω2

2 + b2(κ3ω2 − ω2
1)− b(κ3ω3 − ω1ω2) > 0.

(3.7)

Clearly B̃ ⊂ {
(x, y) ∈ [0, 1]2 : x2 < y <

√
x
}∪{

(1, 1)
}
, and so we have to

prove the reverse inclusion.
Obviously (1, 1) ∈ B̃ because B3 is mapped to the point (1, 1). So we

take a point (x0, y0) ∈ [0, 1]2 satisfying the condition x2
0 < y0 <

√
x0 and we

have to show the existence of a star body K ∈ S3
0 whose image via the dual

Blaschke map is the point (x0, y0). In order to do it we write x0 = y2
0 + ε,

where ε may range, at most, in the open interval

(3.8) ε ∈ (
0,
√

y0 − y2
0

)
;

indeed, notice that the possible end-point
(
y2
0 +

√
y0 − y2

0, y0

)
=

(√
y0, y0

)
would lie on the right boundary curve y = x2.

Next we consider the triple of numbers

(3.9) ω1 =
√

κ3 y0, ω2 = y2
0 + ε, ω3 =

1√
κ3

.

If we show that there exist 0 < a < b such that (3.7) holds for these values,
then we can guarantee the existence of K ∈ S3

0 with

vol(K) =
1√
κ3

, W̃1(K) = y2
0 + ε, W̃2(K) =

√
κ3 y0
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and, of course, W̃3(K) = κ3, and hence

(
x(K), y(K)

)
=

(
W̃1(K)

(
κ3vol(K)2

)1/3
,

W̃2(K)
(
κ2

3vol(K)
)1/3

)
= (y2

0 + ε, y0),

i.e., (x0, y0) ∈ B̃, as required.
Thus, substituting (3.9) in (3.7), we have to show that there exist a < b

such that

(3.10) 0 < a <
y0√
κ3

< b,

(3.11) y0 − (y2
0 + ε)2 + κ3a

2ε−√κ3 a
(
1− y0(y2

0 + ε)
)

> 0,

and

(3.12) y0 − (y2
0 + ε)2 + κ3b

2ε−√κ3 b
(
1− y0(y2

0 + ε)
)

> 0.

Denoting by a+, a−, b+, b− the corresponding roots of the 2nd-degree poly-
nomials (in a and b) in, respectively, (3.11) and (3.12), namely,

a±, b± =
√

3
4
√

πε

[
1− y3

0 − εy0 ±
√

y6
0 + 6εy4

0 − 2y3
0 + 9ε2y2

0 − 6εy0 + 4ε3+ 1
]

we get that (3.11) and (3.12) hold if and only if, either a < a− or a > a+,
and either b < b− or b > b+.

It is easy to see, on one hand, that b+ > y0/
√

κ3 for all ε > 0, and hence
we can guarantee that (3.12) holds for any b > b+.

On the other hand, a direct computation proves that a− > 0 if and
only if 0 < ε <

√
y0 − y2

0 (cf. (3.8)). Therefore, and altogether, when
ε ∈ (

0,
√

y0 − y2
0

)
, it suffices to take b > b+ and a < min

{
a−, y0/

√
κ3

}
to

assure the validity of (3.10), (3.11) and (3.12).
We finally notice that the previous argument is valid when ε ranges over

the above interval, and therefore, for a fixed height y0 in the diagram, the
full open segment(

(y2
0, y0),

(
y2
0 +

√
y0 − y2

0, y0

))
=

(
(y2

0, y0),
(√

y0, y0

)) ⊂ B̃.

It concludes the proof. ¤
Theorem 3.1 constitutes a second significative difference between the

classical and the dual Blaschke problems: in the second case, the dual
Aleksandrov-Fenchel inequalities completely determine the dual Blaschke
diagram; the classical Aleksandrov-Fenchel inequalities, however, are not
enough to determine the Blaschke diagram, since at least one inequality is
unknown (the missing boundary of the Blaschke diagram).

We observe that in [1, Proof of Proposition 4.2] it was proved that the
dual Aleksandrov-Fenchel inequality W̃1(K)2 ≤ κ2W̃0(K) characterizes the
dual quermassintegrals when n = 2. As an immediate consequence of Theo-
rem 3.1 we get the following new characterization of dual quermassintegrals
in dimension n = 3.
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Corollary 3.1. Let ωi > 0, i = 0, 1, 2, be positive real numbers. There exists
a star body K ∈ S3

0 such that W̃i(K) = ωi, i = 0, 1, 2, if and only if either
they verify the dual Aleksandrov-Fenchel inequalities (3.3)–(3.6) strictly, or
ωi = λ3−iκ3 for some λ > 0 and i = 0, 1, 2, and in this case K = λB3.

Proof. Obviously, if the numbers ωi are dual quermassintegrals, then they
verify the dual Aleksandrov-Fenchel inequalities (3.3)–(3.6), either strictly,
or with equality in all of them; in this last case, K = λB3 for some λ > 0.

In order to prove the converse we assume that K is not a ball, and thus
the point

(x0, y0) =

(
ω1(

κ3ω2
0

)1/3
,

ω2(
κ2

3ω0

)1/3

)
∈ {

(x, y) ∈ [0, 1]2 : x2 < y <
√

x
}

because the numbers ω0, ω1, ω2 satisfy the (strict) inequalities (3.3)–(3.6).
Then, Theorem 3.1 ensures that (x0, y0) ∈ B̃, and hence, there exists a star
body K̄ ∈ S3

0 such that x0 = x
(
K̄

)
and y0 = y

(
K̄

)
, i.e.,

ω1

ω
2/3
0

=
W̃1

(
K̄

)

vol
(
K̄

)2/3
and

ω2

ω
1/3
0

=
W̃2

(
K̄

)

vol
(
K̄

)1/3
.

Taking K =
(
ω0/vol(K̄)

)1/3
K̄ ∈ S3

0 , we get vol(K) = ω0, W̃1(K) = ω1 and
W̃2(K) = ω2, as required. ¤

Regarding the study of the roots of the dual Steiner polynomial, it has
been recently developed in [1]. In particular, if we look for the different
types of roots that a (n-dimensional) dual Steiner polynomial can have, in
[1, Proposition 4.4] it was proved that all its roots are real if and only if
K = λE for some λ > 0, i.e., the only possibility is that all the roots are
equal. Therefore, in dimension 3 we can only have either a real root and two
(conjugate) complex ones (and so all these sets are mapped into the interior
of the diagram), or three equal real roots (corresponding to the point (1, 1)).

Acknowledgement. The authors would like to strongly thank the anonymous
referee for the very valuable comments and helpful suggestions; his/her ob-
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